45 research outputs found

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    Critical Path Analysis

    No full text

    ‘Some tactical problems in digital simulation’ for the next 10 years

    No full text

    Conceptual modelling for simulation Part I: definition and requirements

    Get PDF
    Conceptual modelling is probably the most important aspect of a simulation study. It is also the most difficult and least understood. Over 40 years of simulation research and practice have provided only limited information on how to go about designing a simulation conceptual model. This paper, the first of two, discusses the meaning of conceptual modelling and the requirements of a conceptual model. Founded on existing literature, a definition of a conceptual model is provided. Four requirements of a conceptual model are described: validity, credibility, utility and feasibility. The need to develop the simplest model possible is also discussed. Owing to a paucity of advice on how to design a conceptual model, the need for a conceptual modelling framework is proposed. Built on the foundations laid in this paper, a conceptual modelling framework is described in the paper that follows

    Decision Support Systems (DSS)

    No full text
    corecore